

Chest Pain Wave I

Ruling Patients Out: Do We Need Chest Pain Protocols and Coordinated Care Pathways?

Presenters

Erik P. Hess MD MSc

W. Franklin Peacock, MD

Simon A. Mahler, MD, MS

TCPi Transforming Clinical Practices Initiative

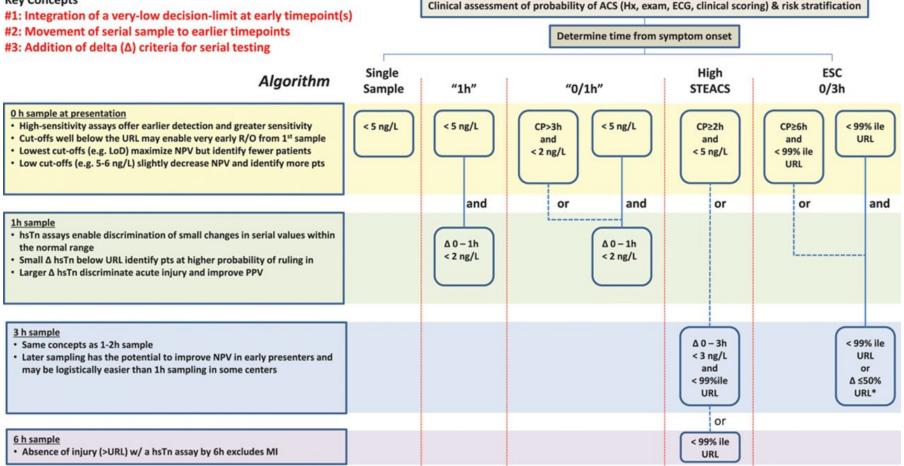
E-OUAL EMERGENCY QUALITY NETWORK

Throughout these E QUAL talks, we've emphasized the need to use CDR's for standardized risk assessments...are we now saying that it is all bunk?

American College of Emergency Physicians* Advancing Emergency Care_____/__

Ruling out AMI: Troponin Only Pathways

Erik P. Hess MD MSc Professor of Emergency Medicine


Five rule-out strategies using high-sensitivity assays for troponin (hsTn) and key concepts

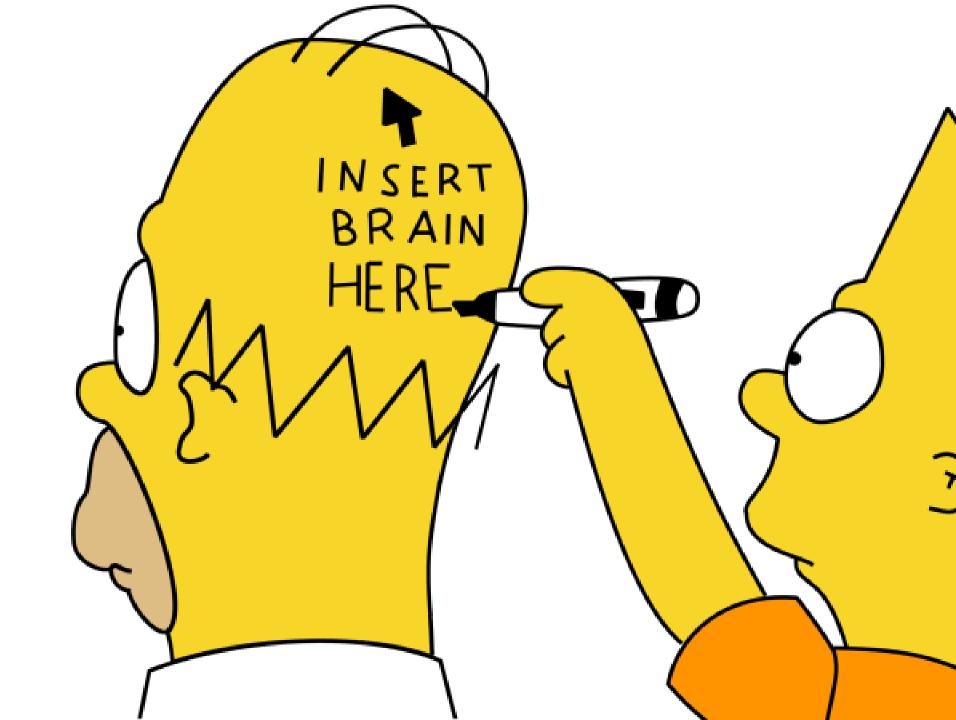
Early Rule-Out Strategies with hsTn

Key Concepts

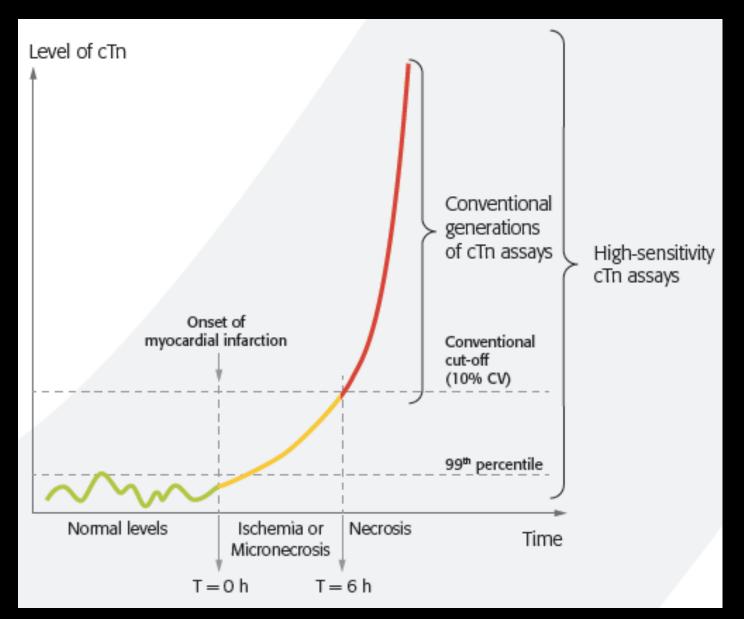
#1: Integration of a very-low decision-limit at early timepoint(s)

Suspected ACS without ST-elevation

David A. Morrow Circulation. 2017;135:1612-1616



Definitions


 Limit of blank (LOB): cTn concentration in zero calibrator sample (e.g., "water")

 Limit of detection (LOD): lowest measurable cTn concentration

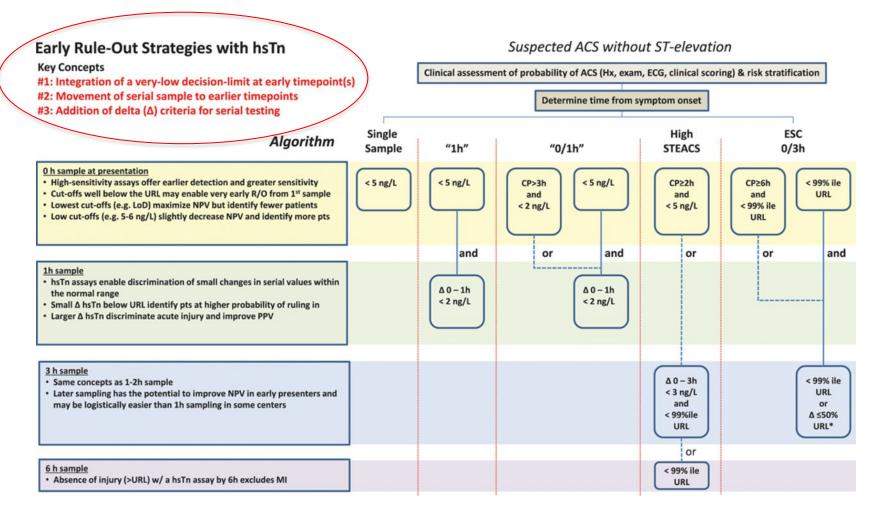
 99th percentile upper reference limit (URL):
 99th percentile value from reference control (healthy) population

hsTn: More sensitive and more rapid

Multiple causes of Tn elevation!!

Analytical

Heterophilic antibodies Rheumatoid factor Microparticles Fibrin clots in the sample Hemolyzed, lipaemic of icteric samples Analytical failure

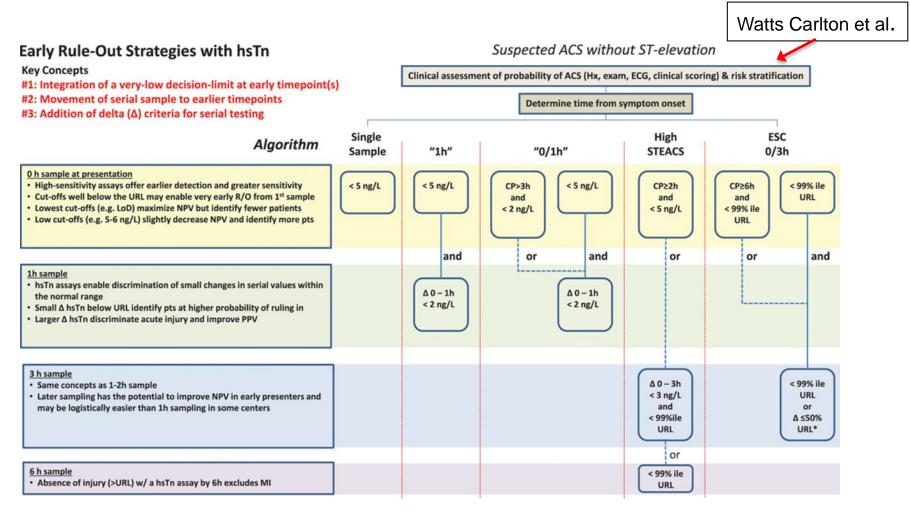

Clinical (cardiac)

Myocarditis and pericarditis Pathologies of cardiac valves Hypertrophic cardiomyopathy Severe arrhythmias Severe heart failure Cardiac trauma Chemotherapy toxicity Cardiac amiloidosis and sarcoidosis Rejection of heart transplantation

Clinical (extra-cardiac)

Pulmonary embolism Acute pulmonary oedema Severe hypertension or hypotension Chronic renal failure Hypothyroidism Stroke Sepsis Snake venom Sickle Cell Disease Physical exercise Ketoacidosis Carbon monoxide poisoning

Schematic representation of five variations of rule-out strategies using high-sensitivity assays for troponin (hsTn) and the key concepts that underlie each element.


David A. Morrow Circulation. 2017;135:1612-1616

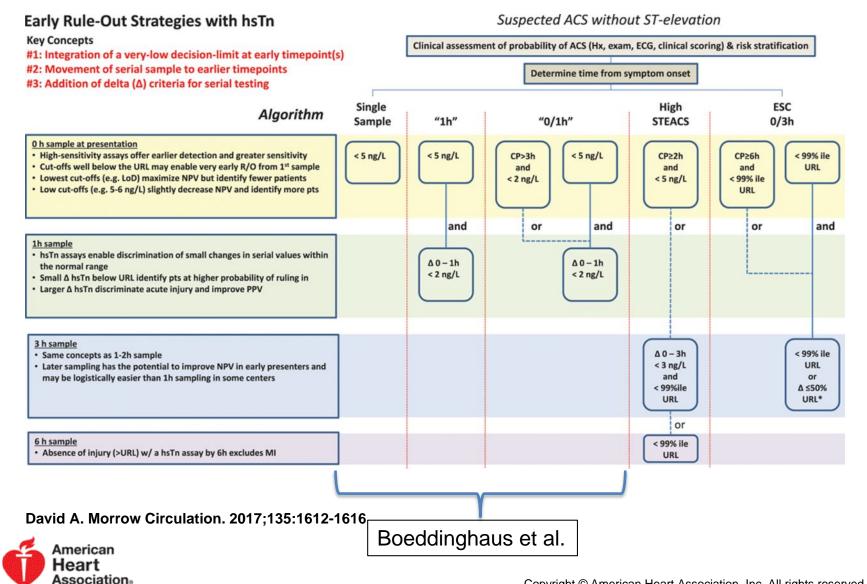
Boeddinghaus et al.

Chapman et al.

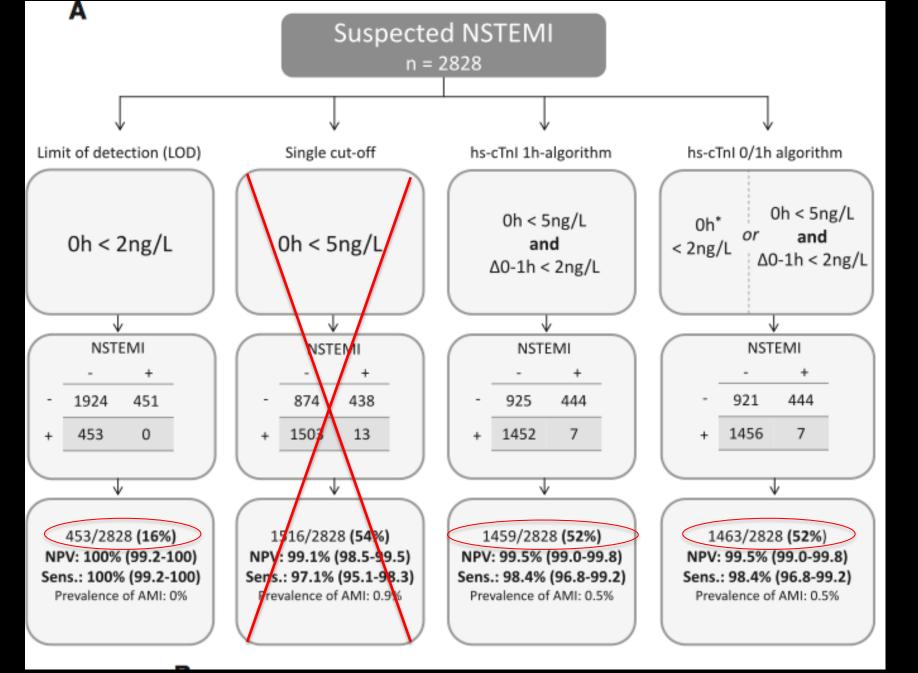
Schematic representation of five variations of rule-out strategies using high-sensitivity assays for troponin (hsTn) and the key concepts that underlie each element.

David A. Morrow Circulation. 2017;135:1612-1616

Coronary artery disease

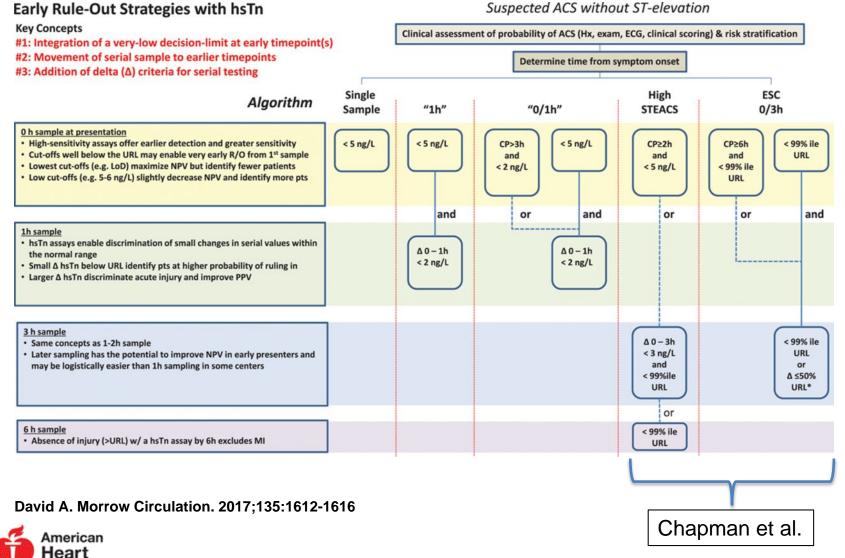

Group	TP	FP	FN	TN	
hs-cTnT <=	LoD and TIM	AI=0			
UK	93	634	1	193	
AU	39	549	1	115	
NZ	242	1036	0	256	
Combined	374	2219	2	564	
hs-cTnl <= L	oD and TIM		_		-
UK	81	531	2	253	
AU	77	1251	2 3	433	
NZ	282	1358	ŏ	264	
Combined	440	3140	5	947	
hs-cTnT <= I				0.11	-
UK	92	575	2	252	
AU	39	405	1	259	
NZ	241	920	1	372	
Combined	372	1900	à	883	
hs-cTnl <= L			4	000	-
UK	79	419	A	365	
AU	77	804	3	877	
NZ	282	1254	õ	368	
Combined	438	2477	7	1610	
hs-cTnT <= I			'	1010	
UK	91	547	2	280	
AU	38	372	2	292	
NZ	240	817	3 2 2	475	
	369		27		
Combined		1736	/	2783	
hs-cTnl <= L			e	448	
UK	77 77	336	6 3		
AU		804	3	80	
NZ	282	1162	0	460	
Combined	433	2216	12	1871	

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

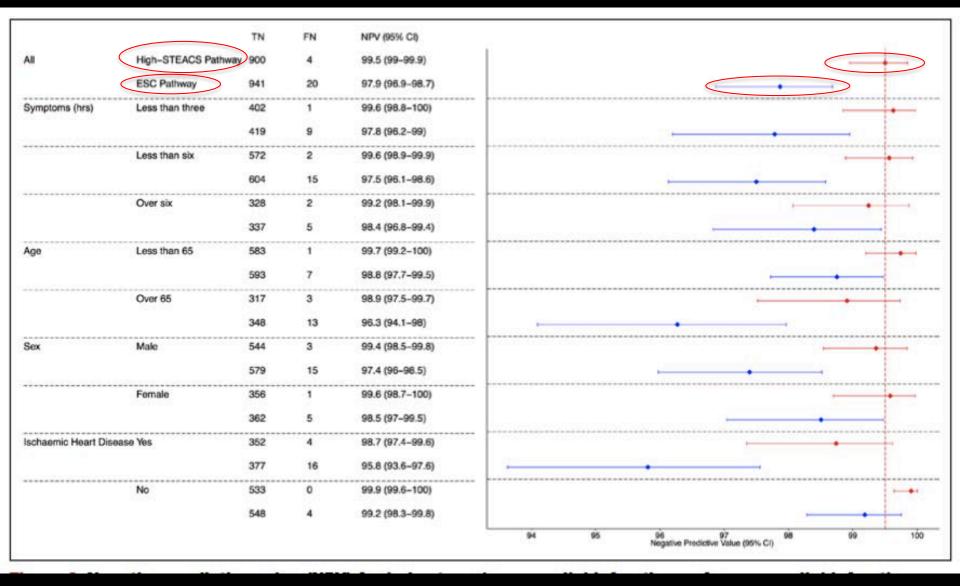

Sensitivity (%)

Watts Carlton et al., Heart 2017.

Schematic representation of five variations of rule-out strategies using high-sensitivity assays for troponin (hsTn) and the key concepts that underlie each element.



Copyright © American Heart Association, Inc. All rights reserved.



Boeddinghaus et al. Circulation 2017

Schematic representation of five variations of rule-out strategies using high-sensitivity assays for troponin (hsTn) and the key concepts that underlie each element.

Association

Chapman et al. Circulation 2017.

Summary

 AMI diagnosis: more rapid, sensitive, and precise with hs-cTn

 Rule out AMI at LOD with single cTn (CP onset > 3 hrs)

 Other strategies: Cut-point < 99th percentile (except ESC) + 1-3 hr delta strategy + risk score

E-OUAL EMERGENCY QUALITY NETWORK

OK – so the troponin only approach can tell us who did not have an MI...but what about risk stratifying for CAD or CVD events?

American College of Emergency Physicians*

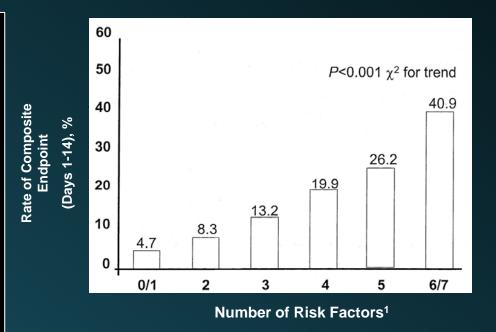
You Need To Include a Decision Rule!

W. Frank Peacock, MD, FACEP, FACC Professor, Emergency Medicine Associate Chair and Research Director Baylor College of Medicine

Background

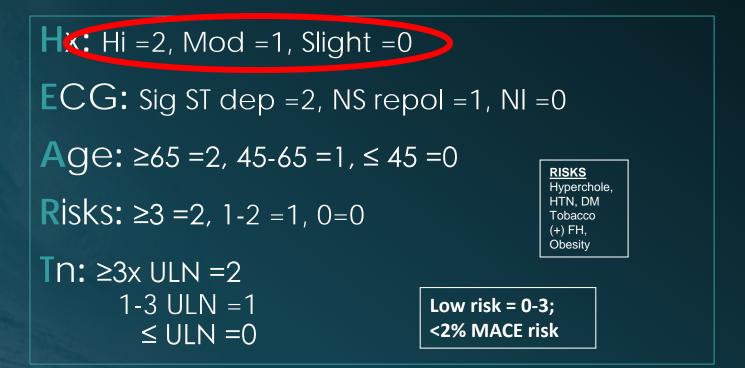
- Safely reducing ED LOS or DC rate in patients with ACS symptoms
 - Mixed success
 - <u>Gestalt never wins</u>
 - it may not lose, but it never wins

• ADP's: NOT about diagnosis


- ECG, Tn x2, Risk score
- Few large prospective evaluations have been performed

TIMI Risk Score: 2 week MACE

Risk factors:


- Age ≥65
- ≥3 CAD risk factors
- Coronary stenosis ≥50%
- ST-segment deviation
- ≥2 anginal events in last 24 hours
- ASA in last 7 days
- Elevated trop

Each risk factor is = 1 point, and total represents TIMI Risk Score

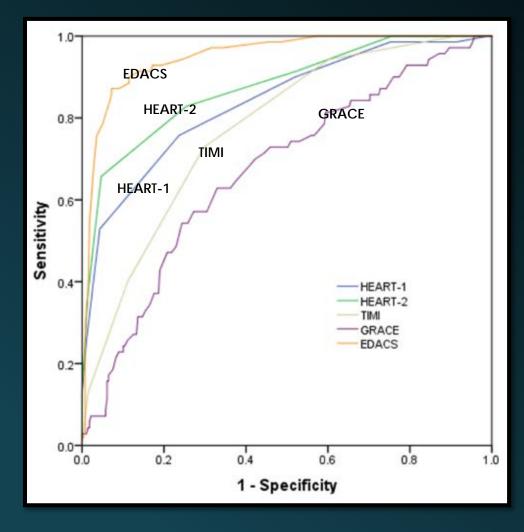
Event rates (all-cause mortality, MI, or UTVR) increase with each 1-point increase in score Antman EM et al. JAMA. 2000;284:835-842.

HEART Score for 6 week MACE MACE = AMI, PCI, CABG, (+) cath, death

Backus BE. Int J Cardiol. 2013 Oct 3;168(3):2153-8.

EDACS ED Assessment of Chest Pain Score

Low Risk Criteria EDACS Score <16 No new ECG ischemia Negative 0 and 2h Tn

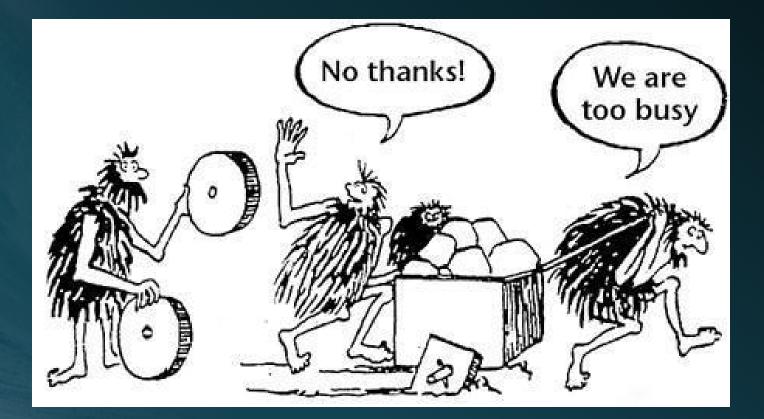

Characteristic	Parameter	Points
History	18-50 yo with CAD, or >2 risk factors	+4
Age	18 to >85	+2 to +20
Sex	Male	+6
Signs and	Diaphoresis	+3
Symptoms	Arm or shoulder radiation	+5
	Pain occurred or worsened with inspiration	-4
	Pain is reproduced with palpation	-6

Than MP. Ann Emerg Med. 2016 Jul;68(1):93-102.

Comparing Scores

- PEARL data set 7 EDs
- Patient with suspected ACS
- Dr. had to document risk of MI <u>BEFORE</u> Tn as: Low Moderate High Risk

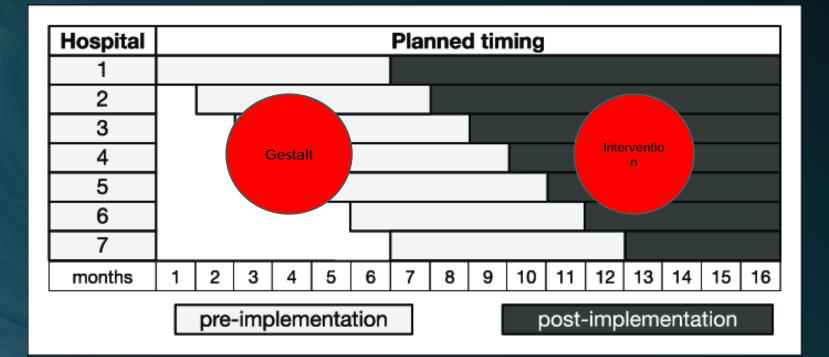
• N=458


Singer AJ. AJEM 35(2017) 704-09

ADP Performance Perspective

	Standard	cutpoint	Sensitivity set at 99%	
	Low risk (n) Definition	Missed AMI, %	Cutoff	% Low Risk
Clinical		5.9 (3.0-11.2)		
HEART-1	3	4.7 (2.1-9.9)	0	1
HEART-2	3	4.1 (1.9-8.7)	0-2	18.9
TIMI	0	0 (0-12.9)	0	7
GRACE	50	7.1 (1.3-31.5)	49	3.2
EDACS	15	1.0 (0.2-4.1)	12	34.3

Singer AJ. AJEM 35(2017) 704-09


Real life change is hard.....

Step Wedge:

Pro: Work in real life? Learn from experience Avoids seasonal variation

Con: No blinding or randomization

Than MP. Circulation. 2017 Nov 14. pii: CIRCULATIONAHA.117.031984

Effect of Using the HEART Score in Patients With Chest Pain in the ED A Stepped-Wedge, Cluster Randomized Trial

- N=3648 (1827 SOC vs 1821 HEART score)
 - Low-risk cohort; MACE = 2.0% (95% CI, 1.2% to 3.3%)
- No difference in Early discharge ED revisits

Readmissions Outpatient visits

- Dr's were hesitant to refrain from admission and diagnostic tests in low risk HEART score patients.
- **Conclusion:** Using the HEART score in CP patients is safe, but the effect on health care resources is limited.

Poldervaart JM. Ann Intern Med. 2017;166:689-697

ICare-ACS Improving Care Processes for Patients With Suspected ACS

A Study of Cross-System Implementation of a National Clinical Pathway

Than MP. Circulation. 2017 Nov 14. pii: CIRCULATIONAHA.117.031984

• New Zealand = 4.6 million people

- In early 2014, Ministry of Health instructed all hospitals to implement a clinical pathway
- Must incorporate an ADP, for the assessment of patients with possible ACS

Than MP. Circulation. 2017 Nov 14. pii: CIRCULATIONAHA.117.031984

Methods

- Multicenter pragmatic trial stepped-wedge, before and after trial
 - 7 acute care hospitals
 - 31,332 suspected ACS patients
- Monitored for >4 months after vs usual care in 6 before
- The main outcome measure odds of safe D/C within 6 hours of presentation

Than MP. Circulation. 2017 Nov 14. pii: CIRCULATIONAHA.117.031984

Methods

- 7 Hospitals
- Agnostic: Tn platform/timing
 - 4 Roche Gen 5 hsTnT
 - 1 Abbott Architect hsTnl
 - 2 Siemens Ultra Tnl
- <u>Agnostic: Risk Stratification Tool</u>
 - 5 EDACS (low risk <16)
 - 2 TIMI (Low risk = 0)

Methods

• Implementation of a <u>clinical pathway</u> for the assessment of suspected ACS that included:

- A clinical pathway document
- ✓ Structured risk stratification
- ✓ Specific times for ECG & serial Tn w/in 3 hrs of arrival
- Directions for combining risk stratification, ECG, and Th in an ADP

Results

- Pre-implementation: N=11,529
 - (range, 284-3465)
- Post-implementation: N=19,803
 - (range, 395–5039)
- Mean 6-hour D/C rate increased
 - from 8.3% (range, 2.7%–37.7%) to 18.4% (6.8%–43.8%).
- Odds of being D/C within 6 hours = 2.4 higher
 - 95% confidence interval, 2.3-2.6

 In patients without ACS, median LOS decreased by 2.9 hrs

Results

• (95% confidence interval, 2.4–3.4)

• If D/C by 6 hrs;

No change in 30-day MACE rates

• SOC=0.52% vs ADP=0.44% (P=0.96)

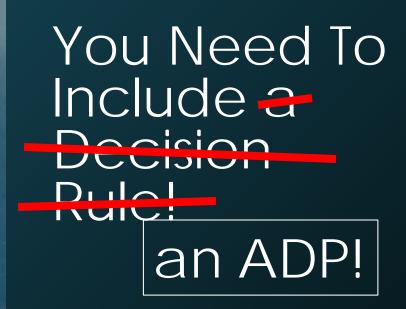
 No adverse events occurred when clinical pathways were correctly followed

MACE if D/C'd by 6 hrs

5 SOC (0.52%) 1 NSTEMI 4 all cause deaths

<u>ADP MACE</u>: 14/16 protocol violations 12 (+) troponin 2 (+) risk scores

2 coding errors Coded as readmission NSTEMI Actually were planned stress test visits


One (+), one (-)

16 ADP (0.44%) 8 NSTEMI 1 STEMI 1 stable VT 1 asystolic pause

- 1 asystolic pause requiring a
 - pacemaker
- 5 all-cause deaths

Conclusions

Implementation of <u>clinical</u> <u>pathways</u> for suspected ACS
Reduces ED LOS
increases the rate 6 hr safe D/C's

W. Frank Peacock, MD, FACEP, FACC Professor, Emergency Medicine Associate Chair and Research Director Baylor College of Medicine

E-OUAL EMERGENCY QUALITY NETWORK

Well, it's hard to argue with that evidence but, findings are thoroughly discouraging from a pragmatic standpoint. What is needed to make this actually work? Transforming Clinical Practices Initiative

American College of Emergency Physicians* Advancing Emergency Care_____/__ ADP Research is Easy Implementation is Hard: Moving from Evidence to Adoption & Adherence

Simon A. Mahler, MD, MS, FACEP Director of Clinical Research Associate Professor Department of Emergency Medicine Wake Forest School of Medicine

Disclosures

Research funding:

- NIH: Heart Lung and Blood Institute
- NCATS: National Center for Advancing Translation Sciences
- Donaghue Foundation/Association of American Medical Colleges
- Duke Endowment
- Abbott Laboratories
- Siemens Healthcare
- Roche Diagnostics

Author for Up-to-Date

Chief Medical Officer: Impathiq, Inc.

How to go from the literature to adoption

 Validated Tool Evidence-based Implementation Adoption / Adherence Desired Outcomes

"The best big ideas is only going to be as good as its implementation"

Jay Samit

HEART Score Implementation

Annals of Internal Medicine

ORIGINAL RESEARCH

Effect of Using the HEART Score in Patients With Chest Pain in the Emergency Department

A Stepped-Wedge, Cluster Randomized Trial

Judith M. Poldervaart, MD, PhD; Johannes B. Reitsma, MD, PhD; Barbra E. Backus, MD, PhD; Hendrik Koffijberg, PhD; Rolf F. Veldkamp, MD, PhD; Monique E. ten Haaf, MD; Yolande Appelman, MD, PhD; Herman F.J. Mannaerts, MD, PhD; Jan-Melle van Dantzig, MD, PhD; Madelon van den Heuvel, MD; Mohamed el Farissi, MD; Bernard J.W.M. Rensing, MD, PhD; Nicolette M.S.K.J. Ernst, MD, PhD; Ineke M.C. Dekker, MD; Frank R. den Hartog, MD; Thomas Oosterhof, MD, PhD; Ghizelda R. Lagerweij; Eugene M. Buijs, MD, PhD; Maarten W.J. van Hessen, MD, PhD; Marcel A.J. Landman, MD; Roland R.J. van Kimmenade, MD, PhD; Luc Cozijnsen, MD; Jeroen J.J. Bucx, MD, PhD; Clara E.E. van Ofwegen-Hanekamp, MD, PhD; Maarten-Jan Cramer, MD, PhD; A. Jacob Six, MD, PhD; Pieter A. Doevendans, MD, PhD; and Arno W. Hoes, MD, PhD

Background: The HEART (History, Electrocardiogram, Age, Risk factors, and initial Troponin) score is an easy-to-apply instrument to stratify patients with chest pain according to their short-term risk for major adverse cardiac events (MACEs), but its effect on **Results:** A total of 3648 patients were included (1827 receiving usual care and 1821 receiving HEART care). Six-week incidence of MACEs during HEART care was 1.3% lower than during usual care (upper limit of the 1-sided 95% CI, 2.1% [within the nonin-

Conclusion: Using the HEART score during initial assessment of patients with chest pain is safe, but the effect on health care resources is limited, possibly due to nonadherence to management recommendations.

weeks, 1 hospital was randomly assigned to switch to "HEART care," during which physicians calculated the HEART score to guide patient management.

Measurements: For safety, a noninferiority margin of a 3.0% absolute increase in MACEs within 6 weeks was set. Other outcomes included use of health care resources, quality of life, and cost-effectiveness.

ment recommendations.

Primary Funding Source: Netherlands Organisation for Health Research and Development.

Ann Intern Med. 2017;166:689-697. doi:10.7326/M16-1600 Annals.org For author affiliations, see end of text. This article was published at Annals.org on 25 April 2017.

Results

- 3% reduction in hospitalizations not significant
 No difference in median length of stay
 ~10% increase in outpatient clinic visits
 36% of low-risk HEART score patients had prolonged observation.
 Non-adherence occurred in 41% of low-risk
 - patients and 12% of high-risk patients.

Interpretation?

a) The HEART score doesn't work OR

b) Their implementation didn't work

Keys to successful ADP implementation

Stakeholder buy-in Champions Education Consider Work Flow and balancing measures Tracking Outcomes and Adherence

HEART Pathway: Key Stakeholders

- Health System Administrators
- Health Informatics
- Nursing & Advanced Practice Clinician Leadership
- Physician Leadership
 - Cardiology
 - Primary Care
 - Hospitalists
 - Emergency Medicine

HEART Pathway EMR Integration

Decision support integrated into EMR on 11/3/2014

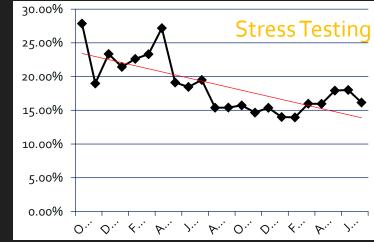
Be	stPractice Advisory - Heart,Five	
	1 Your patient has symptoms concerning for ACS. Please click the 'HEART Pathway' link below.	
	5 HEART Pathway - Click Here!	
		-
	Accept Cancel	

- Right Patient
- Right Provider
- Right Time

Tracking Adherence

- Weekly reports
- Corrective education

Date,			
Time		 	Provider
11/3/14 1707		 	BRYAN
11/4/14 0733		 	NOL
11/4/14 1027		 	JULIE
11/5/14 0835		 	ROBERT
11/5/14 1117		 	AARON
	No Action Taken	 	REBECCA
11/5/14 0746		 	JOHN
11/5/14 1442		 	SCOTT
11/6/14 1034		 	MATT
11/6/14 1122		 	DEREK
11/6/14 1912		 	DEREK


Tracking Outcomes

Risk distribution

- Utilization rates
 - Hospitalization
 - Stress testing
 - Recurrent care

Safety

Barriers to EMR integration

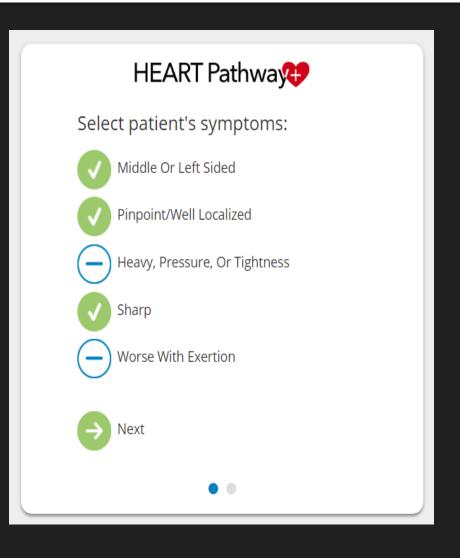
- Getting all stakeholders to agree
- Limited IT resources
 - Lack expertise for custom CDS builds
 - Time and prioritization
 - Maintenance of CDS

EMR App Store Model

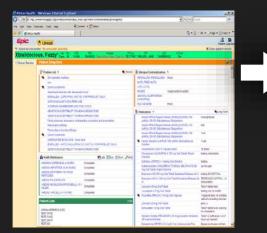
EPIC APP Orchard

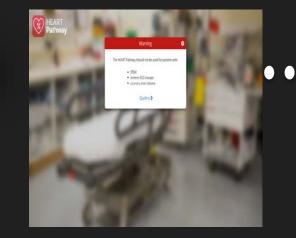
+ Back to apps	
HEART Pathwa	HEART Pathway Version 1.0
	Functional Areas ♥ Patient Care
	Epic Versions ✓ Epic 2015 ✓ Epic 2017

decision tools into their EMRs, the HEART Pathway app standardizes care across hospitals, improves clinician adherence to protocols, and provides robust auditing and compliance tools.


About this App

https://www.heartpathwayapp.com


HEART Pathway is designed for more accurate risk stratification of patients who present to the Emergency Room with chest pain, identifying patients unlikely to benefit from hospitalization or stress testing/cardiac imaging who can safely be discharged home from the ED. The underlying algorithm, validation testing and randomized control trials for HEART Pathway are the result of several years' clinical research and informatics conducted by researchers at Wake Forest School of Medicine.


Studies have demonstrated the benefits of HEART Pathway compared to usual care. Improved hospital and patient outcomes with HEART Pathway are demonstrated in a published randomized control trial (Mahler et al, Circ CVQO J, 2015). For patients presenting to the Emergency Room, HEART Pathway has shown to reduce patient length of stay by 12 hours, reduce cost by 14% per patient, and provide accurate decision support with a miss rate of acute cardiac events over a 30 day window at < 1%.

SMART FHIR App

The HEART Pathway EMR App

Contextual Launch from Point-of-Care EMR workflow Clinical Decision Support

Data Analytics

Summary

ADP will only perform well if implemented well

Stakeholder buy-in Consider EMR implementation Track Outcomes and Adherence

Questions? Contact the E-QUAL team at equal@acep.org

American College of Emergency Physicians[®]